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Abstract
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profitability evaluated in-sample. The profitability of the strategy is assessed with data from the São Paulo
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strategy exhibit excess returns of 16.38% per year, Sharpe Ratio of 1.34 and low correlation with the market.
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1. Introduction

The motivation for statistical arbitrage techniques has its roots in works that preach predictability of stock

prices and existence of long term relations in the stock markets. In recent years, the notion of mean reversion

has received a considerable amount of attention in the financial literature. Since future observations of a

mean-reverting time series can potentially be forecasted using historical data, this literature challenges the

stylized fact in financial economics which says that the stock prices shall be decribed by independent random

walk processes; what would automatically imply no predictability in the stock prices (see, for example Lo &

MacKinlay, 1988; Lo & Mackinlay, 1997; Guidolin et al. , 2009). A number of studies have also examined the

implications of mean reversion on portfolio allocation and asset management; see Barberis (2000), Carcano

et al. (2005), Serban (2010) and Triantafyllopoulos & Montana (2011) for recent works. Active asset

allocation strategies based on mean-reverting portfolios, which generally fall under the umbrella of statistical

arbitrage, have been used by investment banks and hedge funds for several years. Possibly the simplest of

such strategies consists of a portfolio of only two assets, as in pairs trading. This trading approach consists

in going long on a certain asset while shorting another asset in such a way that the resulting portfolio has

no net exposure to broad market moves. In this sense, the strategy is often described as market neutral. For

further discussions on statistical arbitrage approaches based on mean-reverting spreads and many illustrative

numerical examples the reader is referred to Pole (2007) and Vidyamurthy (2004).

Pairs trading is a statistical arbitrage strategy designed to exploit short-term deviations from a long-run

equilibrium between two stocks. Traditional methods of pairs trading have sought to identify trading pairs

based on correlation and other non-parametric decision rules. This study selects trading pairs based on the

presence of a cointegrating relationship between two stocks. Cointegration enables us to combine the two

stocks in a certain linear combination so that the combined portfolio is a stationary process. If two stocks

share a long-run equilibrium relationship, then deviations from this equilibrium are only short-term and are

expected to die out in future periods. To profit from this relative misspricing, the trade is opened by buying

the stock which is bellow the long-run equilibrium, and selling (short) the equity which is above it. The pair

trade is then closed by reversing the opening transactions once the pair reverts to its expected value. The

long-short transactions are constructed to yield a net position of zero.

In order to reduce risk in pairs-trading strategies, it is interesting to open many trades all with a very

short holding time, hoping to diversify the risk of each trade. According to Avellaneda & Lee (2010), the pairs

trading strategy is the "ancestor" of statistical arbitrage. The term "statistical arbitrage" encompasses a

variety of investment strategies whose principal characteristic is the use of statistical tools to generate excess
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returns. Desired characteristics of this class of strategies is market neutrality (low market correlations), and

signal generation based on rules rather than fundamentals.

It is well known that pairs trading is a common strategy among many hedge funds. However, there is not

a significant amount of academic literature devoted to it due to its proprietary nature. For a review of some of

the existing academic models, see Poterba & Summers (1988); Lo & MacKinlay (1990); Gatev et al. (2006),

Elliot et al. (2005); Perlin (2009) and Broussard & Vaihekoski (2012). In a recent paper, Khandani & Lo

(2007) discuss the performance of the Lo-MacKinlay contrarian strategies in the context of the liquidity crisis

of 2007. These strategies have several common features with the ones developed in this paper. Khandani &

Lo (2007) market-neutrality is enforced by ranking stock returns by quantiles and trading “winners-versus-

losers”, in a dollar-neutral fashion. On the parametric side, Poterba & Summers (1988) study mean-reversion

using auto-regressive models in the context of international equity markets. Zebedee & Kasch-Haroutounian

(2009) analyzes the impact of pairs-trading at the microstructure level within the airline industry. Avellaneda

& Lee (2010) use Principal Component Analysis or sector ETFs in their statistical arbitrage strategy. In all

these cases, they model the residuals or idiosyncratic components of a portfolio of pairs, as mean-reverting

processes.

In this paper, we investigate the risk and return of a portfolio consisting of many pairs trades all selected

based on cointegration. Different from other authors who used the methodology proposed by Gatev et al.

(2006) (for example Nath, 2006; Perlin, 2009) and market professionals who have used bollinger bands, in

this paper we employ the methodology of cointegration to develop a pairs trading strategy. The sample

period used starts in January 2005 and ends in October 2012, summing up to 1.992 observations. Daily

equity closing prices are obtained from Bloomberg. The analysis covers all stocks in the Bovespa index

(Ibovespa) from the Sao Paulo stock exchange. An analysis based on Brazilian data is important not only

because Bovespa is the largest stock exchange in South America and one of the largest among all emerging

economies, but also because the cointegration approach to select pairs have not yet been studied in detail

in Brazil. The proposed statistical arbitrage strategy generates average excess return of 16.38% per year

in out-of-sample simulations, Sharpe Ratio of 1.34, low exposure to the equity markets and relatively low

volatility. The results show the pairs trading strategy based on cointegration is persistently profitable even

in the period of global crises, reinforcing the usefulness of cointegration in quantitative strategies.

The remainder of this paper is organized as follows. In section 2, the concepts of statistical arbitrage and

pairs trading strategies are presented in greater detail. Section 3 explain the use of cointegration within this

class of strategies. In section 4, we describe the strategy proposed. In section 5 the data are discussed and
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the results obtained from the out-of-sample simulations are empirically verified. In section 6, a conclusion

based on the empirical results is presented, along with suggestions of future research.

2. Statistical Arbitrage and Pairs Trading

Statistical arbitrage is a trading or investment strategy used to exploit financial markets that are out

of equilibrium. Litterman (2003) explains the philosophy of Goldman Sachs Asset Management as one of

assuming that while markets may not be in equilibrium, over time they move to an equilibrium, and the

trader has an interest to take maximum advantage from deviations from equilibrium.

Pairs-trading, which is a statistical arbitrage strategy, was pioneered by Nunzio Tartaglias quant group

at Morgan Stanley in the 1980’s, and it remains an important statistical arbitrage technique used by hedge

funds. Tartaglias’ group found that certain securities were correlated in their day-to-day price movements,

(see Vidyamurthy, 2004). Based on these empirical investigations, trading strategies might be formed to

explore the inefficiencies of stock markets. The key references in this area are Lo & MacKinlay (1988);

Khandani & Lo (2007); Lo & Mackinlay (1997); Gatev et al. (2006) and Guidolin et al. (2009). One of the

many possible statistical arbitrage strategies is the pairs trading. In pairs trading we do not deal with trends

established for particular assets but with common long-run equilibrium trends among pairs of stocks. The

idea behind pairs trading is to first identify a pair of stocks with similar historical price movement. Then,

whenever there is sufficient divergence between the prices in the pair, a long-short position is simultaneously

established to bet that the pair’s divergence is temporary and that it will converge over time. Tartaglia

and his group used the pairs trading strategy with great success throughout 1987. However, the group

was dismantled in 1989, after two years of bad results. Nevertheless, the pairs trading strategy became

increasingly popular among individual traders, institutional investors and hedge-funds.

Recently, due to the financial market crisis, it was widely reported in the specialized media that the year

2007 was especially challenging for quantitative hedge funds (see Khandani & Lo, 2007; Avellaneda & Lee,

2010), in particular for the statistical arbitrage strategies. The strategy proposed here is analyzed in the

period in question and the results found corroborate those of other authors.

Jacobs et al. (1993) argues that long-short stock strategy can be implemented in three different ways:

as market neutral, as equitizing, or as hedge strategies. Market neutral long-short strategies, as the one

proposed here, maintain even exposure to market risks using long and short positions at all times. This

approach eliminates exposure to directional risk from the market, such that the obtained return should not

be correlated with the market reference index, which is the equivalent to a beta-zero portfolio. The portfolio
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returns are generated by the isolation of the alfa, adjusted by risk. According to Fung & Hsieh (1999), a

strategy is said to be market neutral if its return are independent from the market’s relative return. Market

neutral funds actively seek to avoid systematic risk factors, betting on relative price movements.

The process of asset pricing can be seen in absolute or relative terms. In absolute terms, asset pricing is

made by way of fundamentals, such as discounted future cash flow, for example. Relative pricing means that

prices from assets that are close substitutes for each other should sell for similar prices - it doesn’t say what

the price of an asset should be, but it says what the price of an asset should be with respect to the price of

another asset.

The other pilar of pairs trading is deviations from this relative price. To be able to profit from the trade,

these deviations have to be mean reverting. However, reversion to the mean requires a driving mechanism;

pairs trading would not work if prices were truly random. The Law of One Price (LOP) is the proposition

that two investments with the same payoff in every state of nature must have the same current value. Thus,

the price spread between close substitute assets should have a long term stable equilibrium over time. Hendry

& Juselius (2001), use this idea to show that short term deviations from these equivalent pricing conditions

can create short-lived arbitrage opportunities depending on the duration of price deviation.

Statistical arbitrage is based on the assumption that the patterns observed in the past are going to be

repeated in the future. This is in opposition to the fundamental investment strategy that explores and tries

to predict the behaviour of economic forces that influence the share prices. Thus statistical arbitrage is a

purely statistical approach designed to exploit equity market inefficiencies defined as the deviation from the

long-term equilibrium across the stock prices observed in the past.

When a deviation in the spread of the long term equilibrium price relationship is identified to be sub-

stantially greater than the slipage1 due to the bid-ask spread, a position is opened simultaneously, buying

the relatively undervalued stock and selling the relatively overvalued stock. The position is closed when the

prices return to the spread level of long term equilibrium. The net profit of the operation is the sum of the

profits from the long and short positions, calculated as the difference between the open prices and closed

prices (ignoring transaction costs).

The natural extrapolation of pairs trading strategies consists of the operation of a group of stocks against

another group of stocks, or generalized pairs trading (see Alexander & Dimitriu, 2005a; Dunis & Ho, 2005;

Avellaneda & Lee, 2010; Caldeira & Portugal, 2010).

1Slipage is defined as the difference between the prices that trigger the order and the prices at which the order is executed.
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3. Cointegration-based strategies

The applicability of the cointegration technique to asset allocation was pioneered by Lucas (1997) and

Alexander (1999). Its key characteristics, i.e. mean reverting tracking error, enhanced weight stability and

better use of the information comprised in the stock prices, allow a flexible design of various funded and

self-financing trading strategies, from index and enhanced index tracking, to long-short market neutral and

alpha transfer techniques.

3.1. The cointegration approach

The approach described in Vidyamurthy (2004) is an attempt to parameterize pairs trading strategies

exploring the possibility of cointegration. Cointegration is a statistical feature, where two time series that

are integrated of order 1, I(1), can be linearly combined to produce one time series which is stationary, or

I(0). The pairs trading technique used here is based on the assumption that a linear combination of prices

reverts to a long-run equilibrium and a trading rule can be constructed to exploit the expected temporary

deviations. In general, linear combination of non-stationary time series are also non-stationary, thus not all

possible pairs of stocks cointegrate.

Definition. A n× 1 time series vector yt is cointegrated 2 if

• each of its elements individually are non-stationary and

• there exists a non zero vector γ such that γyt is stationary.

In the previous decade the concept of cointegration was increasingly applied in financial econometrics

(see Alexander & Dimitriu, 2002). It is an extremely powerful technique, which allows dynamic modelling

of non-stationary time-series. The fundamental observation that justifies the application of the concept of

cointegration in the analysis of stock prices is that a system involving non-stationary stock prices in levels can

have a common stochastic trend (see Stock & Watson, 1988). When compared to the concept of correlation,

the main advantage of cointegration is that it enables the use of the information contained in the levels

of financial variables. Alexander & Dimitriu (2005a,b); Gatev et al. (2006); Caldeira & Portugal (2010),

suggest that cointegration methodology offers a more adequate structure for financial arbitrage strategies.

The crucial steps in building the pairs trading strategy is the local estimation of both current and expected

spreads. In the framework of cointegration analysis spread is modeled as the local deviation from the long-

term equilibrium among the time series. Therefore the current spread between the assets is computed as

2For more details about cointegration analysis, see Johansen (1995); Hamilton (1994)
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the product of cointegrating vector and current stock prices. On the other hand, the expected spread is

estimated as the product of cointegrating vector and predicted stock prices. The spread prediction is based

on the assumption of a cointegration relation among the pairs of assets.

The idea of pairs trading is to invests an equal amount in asset l and asset s, αP lt = P st , making this a

cashless investment. This can be done by borrowing a number of shares of assets s, immediately selling these

and investing the amount in α shares of asset l. Thus, we define the logarithm of the investment equation as

follows:

0 = log(α) + log(P lt )− log(P st ). (1)

The minus sign reflects the fact that asset s is sold short. The log-return on this investment over a small

horizon (t− 1, t) is

log

(
P lt
P lt−1

)
− log

(
P st
P st−1

)
. (2)

Thus, to make profit the investor doesn’t need to predict the behavior of P lt and P st , but only that of

the difference ln(P lt )− ln(P st ). If we assume that
{

ln(P lt ), ln(P st )
}
in (1) is a non-stationary VAR(p) process,

and there exists a value γ such that ln(P lt ) − γ ln(P st ) is stationary, we will have a cointegrated pair. The

investment equation will then become

0 = ln(α) + ln(P lt )− γ ln(P st ). (3)

The value of γ will be determined by cointegration, and the long run equilibrium relationship between

the assets determines α. The return on the investment will be

ln

(
P lt
P lt−1

)
− γ ln

(
P st
P st−1

)
. (4)

If γ = 1, the investor is able to profit from the trade, even though the investment has an initial value of

0. A γ close to zero requires funds to invest in l. A large γ exposes the investor to risk of going short on s.

Nevertheless, the cointegration approach to pairs trading has its limitations. These limitations are mainly

due to two implementation problems: poor estimates of the cointegrating vector; and inaccurate prediction of

the expected spread that can generate false trading signals. Moreover, the 2-step cointegration test procedure

renders results sensitive to the ordering of the variables, therefore the residuals may have different statistical

properties. Additionally, if the bivariate series are not cointegrated, the "cointegrating regression" leads to

spurious estimates (Lim & Martin, 1995) , making the mean reversion analysis on residuals unreliable. So
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what can be done to improve this simple but intuitive approach? One way is to perform more rigorous testing

of cointegration, including using Johansen’s testing approach based on a Vector Error Correction Model

(VECM) and comparing the outcome to the Engle-Granger results. More importantly, if the cointegration

test fails, one should refrain from trading based on residuals whose properties are unknown. However, the

ultimate test of the cointegration approach to pairs trading will be given by the out-of-sample profitability

of the strategy.

3.2. The Model

The investment strategy we aim at implementing is market neutral, thus we will hold a long and a short

position both having the same value in local currency. This approach eliminates net equity market exposure,

so the returns provided should not be affected by the market’s direction.

Typically the pairs trading algorithm has two main parts. The first fundamental building block of this

methodology is a pairs selection algorithm which, in our case, is essentially based on cointegration testing.

The objective of this phase is to identify pairs whose linear combination exhibits a significant predictable

component that is uncorrelated with underlying movements in the market as a whole. With this aim, we

first check if all the series are integrated of the same order, I(1). This is done by way of the Augmented

Dickey Fuller Test (ADF). Having passed the ADF test, cointegration tests are performed on all possible

combination of pairs. To test for cointegration we adopt Engle and Grangers 2-step approach and Johansen

test3.

For detected cointegrating relations, the second part of the algorithm creates trading signals based on

predefined investment decision rules. In order to implement the strategy we need to follow a couple of

trading rules, i.e. to determine when to open and when to close a position. First, we calculate the spread

between the shares. The spread is calculated as εt = P lt − γP st , where εt is the value of the spread at time t.

Accordingly, we compute the dimensionless z-score defined as zt = εt−µε

σε
, the z-score measures the distance

to the long-term mean in units of long-term standard deviation.

Our basic rule will be to open a position when the z-score hits the 2 standard deviation thresholds from

above or from bellow. This situation implies that the stocks are mispriced in terms of their relative value

to each other. If the z-score hits the -2 standard deviation threshold, it means that the portfolio of pairs is

bellow its long-run equilibrium value. In this case, one should buy the portfolio, which means buying stock

l and selling stock s. If the z-score hits the 2 standard deviation threshold from above, the portfolio of pairs

3All of the procedures are implemented on MATLAB software, version 7.0. The functions cadf and johansen are used, and
are available at www.spatial-econometrics.com.
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is overvalued and one should sell it short, which means selling stock l and buying stock s. The position is

closed the z-score approaches zero again. In all cases opening or closing a position means buying and selling

the stocks simultaneously. More specifically, the basic trading signal can be summarized as

Buy to open if zt < −2.00

Sell to open if zt > 2.00

Close short position if zt < 0.75

Close long position if zt > −0.50

The rationale for opening trades only when the z-score zi is far from equilibrium is to trade only when we

think that we detected an anomalous excursion of the co-integration residual4. As in Avellaneda & Lee (2010),

the threshold values to open and to close positions are selected empirically. Furthermore, there will be some

additional rules to prevent us from loosing too much money on one single trade. If the ratio develops in an

unfavourable way, we will use a stop-loss and close the position if we have a loss of 7%. Stop loss constraints

are not always considered in academic research (for example, Elliot et al. , 2005; Gatev et al. , 2006; Perlin,

2009; Gatarek et al. , 2011), an exception is Nath (2006) that adopts a stop-loss trigger to close the position

whenever the distance widens further to hit the 5th or the 95th percentile. However, stop loss constraints

are fundamental in practice to avoid large losses 5. Finally, we will never keep a position for more that 50

days, since in-sample profitability of the strategy decreases with time (see Figure 1). Based on our in-sample

results, 50 days should be enough time for the pairs to revert to equilibrium, but also a short enough time

not to loose time value. On average, the mean reversion will occur in approximately 10 days, and there is

no reason to wait for a pair to revert fully, if there is very little return to be earned. The rules described are

totally based on statistics and predetermined numbers.

As an additional criteria for selecting the pairs to be used in the composition of the portfolio, we apply

an approach introduced by Dunis et al. (2010). The approach consists in selecting the pairs for trading

based on the best in-sample sharpe ratios6. We form the portfolio of 20 best trading pairs that present the

4Since we deal with many pairs trades simultaneously, there is the possibility of having a trade where stock A is sold short,
and another trade where we buy stock A. In this rare event, we perform both operations. Although it increases transaction
costs, this approach is computationally easier to implement.

5We have consider stop loss constraint of 3%, 5% and 7%. The results are similar, however, when a position looses 7% it
rarely comes back to a positive performance.

6Sharpe ratio is calculated as the ratio of annualized return to annualized standard deviation.
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Figure 1: Pairs Trading Profitability and Speed of Convergence.

The lines plots mean returns versus half-life from the pairs trading strategy. The pairs trading strategy involves
matching stock pairs based on cointegrated prices over a one year estimation period. Then, during the following
four months, the strategy looks for instances in which the z-score of the two stocks in the pair diverge by more
than two standard deviations. When there is divergence the strategy buys the stock that went up and shorts the
stock that went down.
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greatest SR in the in-sample simulations and use them to compose a pairs trading portfolio to be employed

out-of-sample. Goetzmann et al. (2002) and Gatev et al. (2006) show that Sharpe Ratios can be misleading

when return distributions have negative skewness. This is unlikely to be a concern for our study, since our

Table 1 showed that the returns to pairs portfolios are positively skewed, which – if anything – would bias

our Sharpe Ratios downward. The portfolio is expected to produce a positive return as valuations converge.

As soon as the spread distances itself from its long term mean, one can bet that the spread will return

to its long term mean, however we do not know if we will gain more on long or on short positions7. Once

a trade is initiated, the portfolio is not rebalanced. Therefore, after the opening of a position, even when

prices move and the position may no longer be neutral, the portfolio is not rebalanced. We only have two

types of transactions that are admitted by the strategy’s methodology; move into a new position, or the total

liquidation of a previously opened position. The strategy adopted here seeks to be beta-neutral, thus the

financial values allocated to long and short stocks might not be equal8.

7We don’t know which case occurs first: if the stocks return to their long term equilibrium because the overvalued stock price
falls more or because the undervalued stock price climbs more, or if they both present the same performance.

8One alternative is to define the investment as financially-neutral, assuming equal financial volumes of long and short shares.
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4. Data and Empirical Results

4.1. Data

The data used in this study consists of daily closing prices of the 50 stocks with largest weights in the

Ibovespa index from Sao Paulo Stock Exchange in the beginning of each trading period, which lasts four

months. All of the stocks used are listed in Bovespa, which means they are among the most liquid stocks

traded on the Brazilian market. This characteristic is important for pairs trading, since it often diminishes the

slipage effect. Moreover, using less liquid stocks may involve greater operational costs (bid and ask spread)

and difficulty in renting a stock. Since the stocks in Ibovespa change every 4 months, stocks in the sample

are also changed, thus the sample is not subject to survivor bias. The data were obtained from Bloomberg,

taken from the period of January 2005 to October 2012. The data are adjusted for dividends and splits,

avoiding false trading signals generated by these events, as documented by Broussard & Vaihekoski (2012).

It is common in pairs trading strategies to require that the stock pairs belong to the same sector, for

example in Chan (2009) and Dunis et al. (2010). Here, we do not adopt this restriction. Therefore, stock

pairs from companies belonging to different sectors can be traded, as long as they satisfy the cointegration

criterion.

4.2. Estimation and Out-of-sample Results

Initially, we divide the sample into training, and testing periods. The training period is a preselected

period where the parameters of the experiment are computed. Immediately after the training period, the

testing period follows, where we run the experiments using the parameters computed in the first period.

Note that pairs are also treated as parameters in our trading system. We use one year for training and four

months for testing.

Cointegration tests are performed (Johansen and Engle-Granger) for all possible combinations. Of the

1,225 possible pairs, an average of 94 cointegrated pairs were obtained in each period. The pairs that passed

the cointegration tests are then ranked based on the in-sample SR9, following Gatev et al. (2006) and

Andrade et al. (2005). After selecting 20 pairs with highest SR, four months of pairs trading are carried out.

At the end of each trading period the position that were opened are closed, and a new training period ending

on the last observation of the previous trading period is initiated. Now stocks and pairs can be substituted

9The trading gains and losses are computed over long-short positions of one BRL, the payoffs have the interpretation of
excess returns.
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and all parameters are re-estimated. This procedure continues in a rolling window fashion until the end of

the sample.

We indicate the price of the stock in which we have a long position on day t as P lt and the price of the

stock we are shorting on day t as P st . Thus, the net return for pair i on day t can be defined as,

rrawit = ln

[
P lt
P lt−1

]
− γ ln

[
P st
P st−1

]
+ 2 ln

(
1− C
1 + C

)
(5)

where wj,t is the portfolio weight for pair j at time t, N is the number of pairs considered, and C refers to

transaction costs. The second part of Equation (5) has the objective of accounting for transaction costs 10.

The simple net return of a portfolio consisting of N pairs (or assets) is a weighted average of the simple

net returns of the pairs involved, where the weight on each pair is the percentage of the portfolio’s value

invested in that pair. Let p be a portfolio that places weight wi on pair i. Then the simple return of p at time

t is Rpt =
∑N
i=1 witRit, where Rit is the simple return of pair i. The log-returns (or continuously compounded

returns) of a portfolio, however, do not have the above convenient property. Notice that,

rpt = ln(1 +Rpt ) = ln

(
1 +

N∑
i=1

witRit

)
6=

N∑
i=1

witrit

where rit denotes the one-period log-return on pair i as in (5). When returns are measured over short intervals

of time, and are all small in magnitude, the continuously compound return (log-return) on a portfolio is close

to the weighted average of the continuously compounded returns on the individual assets: Rpt ≈
∑N
i=1 witrit.

Thus, as pointed out by Campbell et al. (1997) and Tsay (2010), this approximation is often used to study

portfolio returns. Nevertheless, here we transform back the log-returns of each pair into simple returns in

order to accurately compute the return of the portfolio of pairs.

Let Rit denote the simple daily return on pairs trading strategy. The continuously compounded monthly

return, rit, is defined as:

rit = ln(1 +Rit) = ln

(
Pt
Pt−1

)
,

10This formula accounting directly for transaction costs can be explained in a intuitive way. Suppose we buy the stock ξ at
P ξt−1 at time t− 1 and to sell it one step after, at time t, at P ξt unit of money (price quotation), in fact the costs of buying are
P ξt−1(1 + C) and the profit coming from selling P ξt (1− C). This corresponds to the decomposed net return:

ln

[
P ξt (1− C)

P ξt−1(1 + C)

]
= ln

[
P ξt

P ξt−1

]
+ ln

[
(1− C)

(1 + C)

]
= rξt + ln

[
(1− C)

(1 + C)

]
where the second term accounts for the transaction costs of buying and selling. See, for example, Perlin (2009).
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Given a monthly continuously compounded return rit, it is straightforward to solve back for the corresponding

simple net return Rit:

erit = 1 +Rit =⇒ Rit = erit − 1.

The daily net return to a portfolio of N pairs on day t is

Rnett =

N∑
i=1

witRit, (6)

where wit is the weight of each pair in the portfolio, which in our application is 1/N .

We consider transaction costs of 0.5% one-way in total for both shares following Dunis et al. (2010),

Dunis & Ho (2005) and Alexander & Dimitriu (2002). We are dealing with the 50 most liquid Brazilian

shares in this paper. Transaction costs consist of 0.1% of brokerage fee for each share (thus 0.2% for both

shares), plus slippage for each share (long and short) which we assume to be 0.05% (see Avellaneda & Lee,

2010), and 0.2% of rental cost for short positions (average rental cost is 2% per year per share). In this

paper we use a fully invested weighting scheme. As argued by Broussard & Vaihekoski (2012), the fully

invested scheme is less conservative as it assumes capital is always divided between the pairs that are open.

In practice, we assume that each pair is given the same weight at the beginning of the trading period. If a

pair is not opened, the return is zero, and thus the weight does not change. This implies that for the fully

invested weighting scheme, the money from a closed pair is invested in the other pairs that are open. If a

pair is reopened, the money is invested back by redistributing the investment between the pairs according to

their relative weights.

We examine the pairs trading portfolios performance in terms of the cumulative return, variance of returns

(σ̂2), Sharpe ratio (SR) and Maximum Drawdown (MDD). The Drawdown is the measure of the decline from

a historical peak in some variable (typically the cumulative profit or total open equity of a financial trading

strategy). In this paper, MDD is defined as the maximum percentage drop incurred from a peak to a bottom

in a certain time period. These statistics are computed as follows:
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RA = 252 ∗ 1

T

T∑
t=1

Rt

σ̂A =
√

252 ∗ 1

T

T∑
t=1

(Rt − µ̂)2

SR =
µ̂

σ̂
, where µ̂ =

1

T

T∑
t=1

witRit

MDD = sup
t∈[0,T ]

[
sup
s∈[0,t]

Rs −Rt

]
,

By construction, the maximum Drawdown is higher in absolute values than the maximum loss. Indeed,

this is the most pessimistic scenario.

Table 1 shows the pairs used in the strategy during the last quarter of 2009. We find out that most pairs

are independent random walk. However, of the 1,225 possible pairs, 97 passed the cointegration tests of

Johansen and Engle-Granger. Of those 97, 20 pairs that presented the greatest in-sample SR were selected

to be used out-of-sample. Even though there weren’t restrictions requiring stocks within a pair to come from

companies from the same sector, the majority of pairs are comprised of stocks from companies that are in

some way related. One also notes that many of the pairs present a half life of less than 10 days, reinforcing

the mean-reversion characteristic, which is desirable for the strategy. Although all pairs present positive

SR in-sample simulations, not all obtained positive return in the out-of-sample trading period. During the

period in question, 6 of the 20 pairs that comprise the portfolio showed negative results, and on average a

net return of 3.82% per pair was obtained.

See Figure 2 for a graph showing the evolution of the z-score of residuals of VALE5 against BRAP4. The

z-score measures the distance to equilibrium of the cointegrated residual in units of standard deviations, i.e.

how far away a given pair is from the theoretical equilibrium value associated with our model.

Table 2 summarizes the excess returns for the pairs portfolios. The results presented refer to the out-of-

sample analysis (from January, 2006 to October, 2012). The profitability shown has already been discounted

for transaction costs11. One can also note that the strategy presents a relatively low volatility of 12.49% in

annualized terms, and a correlation coefficient with the market of -0.103, indicating that the strategy can be

11The costs considered are 0.5% in opening and 0.5% in closing the position, summing up to 0.10% per operation. Costs
related to renting stocks sold short were considered to be 2% per year.
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Table 1: Descriptive Statistics of the Pairs. Sample Period 2009:09 to 2009:12.

Note: half-life is expressed in days and net return in %. The 95% critical values for Johansen test is 13.43
and for ADF is 3.38. "EG (ADF) refers to Engle-Granger cointegration test (Augmented Dickey Fuller);
"JH" refers to Johansen cointegration test; "SR" refers to Sharpe Ratio for in-sample period; "Half-Life"
is the expected time to revert half of its deviation from the mean measured in trading days and "Net
Ret" refers to net return for out-of-sample period.

Stock 1 Stock 2 EG (ADF) JH (λtr) SR(in-sample) Half-Life Net Ret.

Pairs

Itub4 Itsa4 -3.67 18.32 4.33 4.58 6.60
Usim5 Usim3 -3.47 18.00 3.29 16.82 9.03
Vale3 Brap4 -4.25 24.23 3.13 12.19 7.96

Ambv4 Natu3 -4.27 19.42 2.69 6.00 10.19
Ambv4 Jbss3 -4.35 20.63 2.57 9.01 4.00
Csna3 Brap4 -3.78 19.27 2.39 11.62 10.10
Bbas3 Lren3 -3.47 16.86 1.90 6.31 -19.68
Cyre3 Gfsa3 -4.17 18.20 1.70 4.81 24.19
Vale3 Ccro3 -3.39 14.24 1.61 10.87 -4.00
Bbas3 Usim3 -3.69 19.58 1.60 8.61 -10.69
Brfs3 Pcar5 -4.15 19.20 1.59 6.41 -6.59
Netc4 Jbss3 -3.87 17.23 1.58 8.39 -8.28
Cple6 Pcar5 -4.05 17.26 1.57 12.22 13.78
Cple6 Ccro3 -3.58 15.97 1.56 13.25 5.37
Lame4 Ambv4 -3.85 17.06 1.46 14.85 8.91
Itub4 Ccro3 -3.92 17.60 1.45 6.18 13.45
Usim5 Bbas3 -4.39 22.13 1.40 6.51 0.40
Ambv4 Ccro3 -3.82 18.76 1.24 6.98 22.09
Brfs3 Cple6 -3.55 19.38 1.15 7.04 -14.38
Bvmf3 Netc4 -3.98 19.39 1.10 17.01 4.02

Figure 2: Evolution of the stock prices and z-score of VALE5 versus BRAP4 from Sep 2008 to Jan 2010.

Note: Normalized spread and the times when the positions are open. The pair is open every time its spread exceeds
the thresholds.
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considered market neutral.

Table 2: Statistics of excess returns of unrestricted pairs trading strategies, 2006:01 to 2012:10

Summary Statistics of the Pairs Trading Strategy

# of observations in the sample 1992
# of days in the training window 250
# of days in the trading period 84
# of trading periods 21
# of pairs in each trading period 20
# min of cointegrated pairs in a trading period 53
# max of cointegrated pairs in a trading period 195
Average annualized return 16.39%
Annualized volatility 12.42%
Annualized Sharpe Ratio 1.34
Largest daily return 6.25%
Lowest daily return -4.80%
Cumulative profit 189.29%
Spearman correlation coefficient 0.076
Skewness 0.41
Kurtosis 5.62
Maximum Drawdown 24.49%

Note: Summary statistics of the daily and annual excess returns on portfolios of pairs between Jan 2006 and October
2012 (1 and 250 observations, respectively). The sample period is from January 2005 through October 2012, while
the out-of-sample simulations were performed from January 2006 through October 2012. In particular, we report
the minimum, median, mean, the skewness and kurtosis, and the maximum of three important performance
measures: the accumulative profit, the Sharpe Ratio, and the maximum draw down.

We also present the maximum drawdown of the strategy in the analyzed period, which was 24.49%. This

is a simple measure of the fall in percentage terms with respect to the peak of the cumulative return, and

can be used as a measurement of how aggressively the strategy’s leverage can be increased. It can be seen in

Figure 3, which conveys the strategy’s cumulative profit and volatility, that the maximum drawdown occurred

in the first semester of 2008.

Figure 3 compares the cumulative excess returns and volatility of the strategy with the cumulative excess

returns of the Ibovespa index. The smooth path of the pairs trading portfolio contrasts dramatically with

the volatility of the stock market. It can be noted in the second panel of Figure 3, that the pairs trading

strategy presented a relatively low and stable standard of volatility for practically the entire analyzed period,

running at levels below 15% in annualized terms, for nearly the entire period. Even in the most acute period

of the international financial crisis, when the volatility on the domestic stock market surpassed 120%, the

volatility of the strategy never reached 40%.

Another relevant part of the evaluation of the pairs trading strategy is the analysis of the correlation with
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Figure 3: Cumulative excess return and Volatility of top 20 pairs and Ibovespa. Period 2006:01 - 2012:10.

Note: In the first panel, cumulative profit of the pairs trading strategy and Bovespa, in the second annualized
volatilities (EWMA Vol with λ = 0.94).
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Figure 4: Spearman correlation coefficient and β of the Strategy.

The Spearman correlation coefficient calculated based on a sliding window of 84 observations. β estimated by the
Kalman filter.
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the main reference market index, since one of the goals of the strategy is market neutrality (see Alexander

& Dimitriu, 2002). The strategy showed a correlation with Ibovespa of less than 0.15, and for a good part of

the sample it was less than 0.10, as can be observed in Figure 4. The estimated market β of the portfolio12,

is also presented, which corroborates with the strategy’s market neutrality.

Table 3 summarizes annual statistics of pairs trading strategies. The tables include mean, median, stan-

dard deviation, skewness, kurtosis, Sharpe Ratio and Maximum drawdown. To test the statistical significance

of the difference between the variances and Sharpe ratios of the returns for pairs trading and Ibovespa, we

follow DeMiguel et al. (2009) and use the stationary bootstrap of Politis & Romano (1994). The p-values

reported on Table 3 are computed using the stationary bootstrap of Politis & Romano (1994) generating

1000 bootstrap samples with smoothing parameter q = 0.25.

12The market β was estimated with the Kalman filter with the goal of verifying its stability over time.
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It can be observed in Table 3 that the strategy showed its worst performance in the year 2008, accumulating

a net profit of 2.85% and volatility slightly higher than in other years. As highlighted by Khandani & Lo (2007)

and Avellaneda & Lee (2010), the second semester of 2007 and first semester of 2008 were quite complicated

for quantitative investment funds. Particularly for statistical arbitrage strategies that experienced significant

losses during the period, with subsequent recovery in some cases. Many managers suffered losses and had

to deleverage their portfolios, not benefiting from the subsequent recovery. We obtain results which are

consistent with Khandani & Lo (2007) and Avellaneda & Lee (2010) and validate their unwinding theory for

the quant fund drawdown. Note that in Figure 3, the proposed pairs trading strategy presented significant

losses in the first semester of 2008, starting its recovery in the second semester. Khandani & Lo (2007) and

Avellaneda & Lee (2010) suggest that the events of 2007-2008 may be a consequence of a lack of liquidity,

caused by funds that had to undo their positions.

Table 3: The P&L (in %) of the Statistical Arbitrage Strategy for 7 Years

Note: Summary statistics for the annual percentage excess (net) returns on portfolios of top 20 pairs
between Jan-2006 and Out-2012. The P -values are computed using the stationary bootstrap generating
1000 bootstrap samples with smoothing parameter q = 0.25. The P -values for q = 0.75 and 0.50 are
similar (available upon request), which is consistent with White (2000). The bootstrap reality check
p-value is zero for all years except for 2008, which indicates that the average return is not the result of
data snooping.

Year Max Min Median Mean Std Skew Kurt Accum Sharpe MDD

2006 4.96 -4.54 0.137 0.127 0.103 0.040 3.48 18.28 1.72 5.57
(0.0000) (0.0170) (0.0000)

2007 4.95 -6.63 0.307 0.186 0.098 0.277 3.67 28.59 2.69 4.14
(0.0000) (0.0000) (0.0000)

2008 14.66 -11.39 0.012 -0.151 0.199 0.674 6.76 1.58 0.12 24.98
(0.0000) (0.4880) (0.4520)

2009 7.17 5.24 0.279 0.239 0.116 0.34 5.24 22.85 1.80 5.24
(0.0000) (0.0300) (0.0000)

2010 4.10 -4.73 0.027 0.003 0.097 0.07 3.66 14.17 1.49 3.66
(0.0000) (0.0260) (0.0000)

2011 5.10 -8.085 0.000 -0.065 0.105 0.31 4.18 17.51 1.35 8.34
(0.0000) (0.0018) (0.0000)

2012 4.72 -3.31 -0.003 0.017 0.113 -0.28 4.47 13.62 1.38 5.76
(0.0000) (0.0000) (0.0000)

All Time 14.66 -11.39 0.081 0.050 0.119 0.439 8.809 166.97 1.241 24.98

4.3. Bootstrap Method for Assessing Pairs Trading Performance

The performance measurement of a trading strategy is then the crucial point to determine it usefulness.

To check for the profitability of the strategy, different techniques can be applied. Among all, the simplest
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is for sure the comparison with a naive trading strategy. This can be done for example by considering a

bootstrap method, where we generate randomly trading signals and trade according to them. This exercise

is useful to determine if our results could be obtained purely by chance.

In this section we further explore whether our pairs trading strategies are merely a disguised way of

exploiting these cointegration relationship. As Gatev et al. (2006), we conduct a bootstrap where we

compare the performance of our pairs to random pairs. The starting point of the bootstrap is the set of

historical dates in which the various pairs are opened. In each bootstrap we replace the actual stocks with

two random securities with similar prior one-day returns as the stocks in the actual pair. Similarity is defined

as coming from the same decile of previous day’s performance. The difference between the actual and the

random pairs returns provides an indication of the portion of our pairs return that is not due to reversion.

We bootstrapped the entire set of trading dates 2500 times. On average we find that the returns on the

random pairs are well below the return based on cointegrated pairs. In fact, the excess returns of random

pairs are slightly negative, and the standard deviations of the returns are large relative to the true pairs,

which is a reflection of the fact that the simulated pairs are poorly matched. Considering, as before, the

same percentage transaction costs for both the long as the short positions, we finally obtain the net return

of the naive strategy:

RNaivet =

N∑
i=1

wi,tri,t + 2N ln

(
1− C
1 + C

)
(7)

4.4. White’s reality check and Hansen’s SPA test

Reality check studies use White (2000) bootstrap reality check methodology to assess data snooping bias

associated with an in-sample search for profitable trading rules. White’s statistical procedure can directly

quantify the effect of data snooping by evaluating the performance of the best trading rule in the context

of the full universe of rules. The best trading rule is found by searching over the full set of trading rules

and selecting the rule that maximizes a pre-determined performance criterion (e.g. average net return). The

p-value for the best trading rule is found by simulating the asymptotic distribution of the maximum of the

performance measure across the full universe of trading rules. A reality check p-value for the best trading

rule can be considered a data-snooping-adjusted p-value.

Let fk denote the excess return of the k-th trading rule over a benchmark and ψk = E[fk] for k = 1, . . . ,M .

The null hypothesis is that there does not exist a superior model in the collection of M models (rules):

H0 : max
1≤k≤M

ψk ≤ 0 (8)
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Rejecting (8) indicates that there is at least one model that outperforms the benchmark. An obvious test

statistic for this hipostis is the maximum of the normalized sample average of fk,i, i.e.,

V n = max
1≤k≤M

√
nfk, (9)

where fk =
∑n
i=1 fk,i/n, with fk,i being the ith observation of fk, and fk,1, . . . , fk,n are the computed returns

in a sample of n past prices for the kth trading rule. Letting {f∗k,1(b), . . . , f∗k,n(b)} denote the bth bootstrap

sample and f
∗
k(b) =

∑n
i=1 f

∗
k,i(b)/n, White (2000) proposed to approximate the sampling distribution of

max
1≤k≤M

√
n
(
fk − ψk

)
by the empirical distribution of

V
∗
n(b) = max

1≤k≤M

√
n
[
f
∗
k(b)− fk

]
, b = 1, . . . B. (10)

To test (8), he proposed to compute

p̂ =
{

# of bootstrap samples with V
∗
n(b) > V n

}
/B (11)

and to reject (8) if p̂ < α, where α is some specified significance level, e.g., 0.05. The rationale underlying

this bootstrap test is that p̂ is a bootstrap estimate of the p-value of the test statistic (9); i.e., the probability

that (10) exceeds its observed value under the extremal point ψ1, . . . , ψM = 0 of the null hypothesis.

Hansen (2005) pointed out two problems with the preceding bootstrap test, which is called White’s reality

check. First, the average returns fk are not studentized. Second, despite the fact that the null hypothesis (8)

consists of an infinite number of parameter values, the distribution of White’s reality check is based on the

least favorable null ψ1, . . . , ψM = 0. To address these problems with White’s reality check, Hansen proposed

a superior predictive ability (SPA) test that replaces
√
nfk in (9) by its k studentized version

Ṽ ∗n (b) =

(
max

1≤k≤M

√
nfk
σ̂k

)
+

, (12)

where x+ maxx, 0 and σ̂k is a consistent estimator of the standard deviation of
√
nfk. The SPA test also

uses a different method to bootstrap the distribution of Ṽn. Defining Z∗k,i(b) = f∗k,i(b)− fk · 1{fk≥−n−1/4σ̂/4}

and letting Z
∗
k(b) denote the sample average of the bth bootstrapped sample

{
Z
∗
k,i(b)

}
i=1,...,n

, Hansen (2005)

used Ṽn in place of V n and the empirical distribution of

Ṽ ∗n (b) =

(
max

1≤k≤M

√
nZ
∗
k(b)

σ̂k

)
+

, b = 1, . . . B, (13)
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Results indicate that the cointegrated based pairs trading strategy over 2005–2012 generates an annual

mean return of 15.87% (a break-even transaction cost of 0.20% per trade). The bootstrap reality check p-value

is zero for all years except for 2008, which indicates that the average return is not the result of data snooping.

The results for the Sharpe ratios indicate that the pairs trading strategy based on cointegration deliver a

better risk-adjusted performance in comparison to the benchmark model. For instance, the strategy delivers

average Sharpe ratio of 1.241 during the out-of-sample period and the differences in SR are statistically

significant.

Table 4: Reality Check: Out-of-Sample Strategy Performance
This table reports the out-of-sample (2006-2010) performance of the pairs trading based on cointegration relative to bootstrap
algoritm trading based on the mean return criterion and Sharpe ratio. The p-values refers to consistent p-value of Hansen.

Year Original P -value (White) Consistent P -value (Hansen)
Return Volatility Sharpe Ratio Return Volatility Sharpe Ratio

2006 0.0770 0.0000 0.0000 0.0770 0.0000 0.0000
2007 0.0480 0.0000 0.0000 0.0490 0.0000 0.0000
2008 0.3110 0.0000 0.3910 0.3120 0.0000 0.3910
2009 0.1230 0.0000 0.0000 0.1230 0.0000 0.0000
2010 0.0310 0.0000 0.0000 0.0310 0.0000 0.0000
2011 0.0870 0.0000 0.0000 0.088 0.0000 0.0000
2012 0.0220 0.0000 0.0000 0.0220 0.0000 0.0000
All Time 0.0068 0.0000 0.0000 0.0068 0.0000 0.0000

5. Conclusions

In this paper we have proposed a statistical arbitrage strategy known as pairs trading for stocks of Sao

Paulo stock exchange. The strategy is implemented based on cointegration, exploring the the mean-reversion

of pairs. Cointegration tests are applied to all possible pair combinations in order to identify stock pairs

that share a long term equilibrium relationship. Of 1,225 possible pairs, on average, 90 cointegrated pairs

from each formation period were obtained. Subsequently, we calculated the standardized spread between

the stocks and we simulated trades in-sample. From there, a diversified portfolio containing 20 pairs that

displayed the greatest SR in-sample were selected to be traded out-of-sample.

The cumulative net profit from the four year period of rolling window out-of-sample tests was of 189.29%,

with an annual mean of 16.38%. In addition, the pairs trading here implemented showed relatively low levels

of volatility and no significant correlation to Ibovespa, confirming its market neutrality. The results are

attractive when compared to other strategies employed by hedge funds (see Soerensen, 2006). Specially if we

take into account that the strategy is practically cashless. In future research projects we will try to enhance
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profitability and to mitigate risks through a method to identify the stability of the cointegration parameters.

Another goal is to apply the proposed methodology to high frequency data. The results presented reinforce

the use of the concept of cointegration as an important tool in the quantitative management of funds.
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Appendix: Reality Check Test Statistic

White’s Reality Check method uses the test statistic

TRC = max
k=1,...,L

n
1
2 fk,

with

fk = n−1
n∑
t=1

f̂k,t+τ ,

to test the null hypothesis that

H0 : max
k=1,...,L

E[fk] ≤ 0.

The test statistic is derived from an asymptotic destitution. ? proves that

n
1
2

(
fk − E[fk]

) d→ N(0,Ω)

where Ω is the (L× L) asymptotic variance covariance matrix

Ω = lim
n→∞

var

{
n

1
2

n∑
t=1

fk(Z, βk)

}

fk(Z, βk) is the general form of the selection criterion, which measures performance of model k relative to

the benchmark, conditional on a given set of data Z. The trick now is that the above expression simplifies

to n
1
2 fk if we impose the element of the null hypothesis where E[fk] = 0 for all k. Remember that the null

hypothesis says that all alternative models perform worse or equal to the benchmark model. This means that

the element of the null the least favorable to the alternative is that all the models are equally as good as the

benchmark, i.e. fk = 0. Thus this simplification leads k to a very conservative test statistic.

Continuing on his quest to find a feasible distribution of n
1
2 fk White states that

n
1
2

(
f
∗
k,b − fk

)
d→ n

1
2

(
fk − E[fk]

)
where f

∗
k,b are the bootstrapped values for model k. That this is true can be seen since as n increases

fk
p→ E[fk] and f

∗
k,b

p→ fk

for large b. Thus by repeatedly drawing resamples of
(
f
∗
k,b − fk

)
we build up an estimate of the desired
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distribution N(0,Ω) of the test statistic in the first equation.

We can now get the Reality Check p-value, taking the model search into account, immediately by com-

paring the test statistic to the distribution of

max
k=1,...,L

n
1
2

(
f
∗
k,b − fk

)
,

to find the according percentile.
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